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Abstract 
Growing incidences of widespread resistance to existing antibiotics are threatening to revert humanity 
to the pre-antibiotic era where fatality and mortality rates due to bacterial infections were outrageously 
high. A way out of this public health concern is a deliberate search for novel drug candidates in the drug 
development pipeline. In this study, a data set of bioactive halogenated hydrazide derivatives was 
subjected to QSAR modeling using the Genetic Function Approximation technique. Before model 
building, the compounds were subjected to geometry optimization using the DFT method of Spartan 14 
software at the B3LYP level of theory and 6-31G** basis set to obtain their minimum energy 
geometries. The validated penta-parametric QSAR model (R2 = 0.76, R2

Adj = 0.70, Q2
LOO = 0.63, R2

Pred = 
0.59) hinted the predominance of L3m, RDF135s, RDF60m, minHBint7, and ATSC5i descriptors on 
the observed MIC of the molecules. The validated model predicted the MIC of three newly designed 
hydrazide analogs; C1, C2, and C3 as 0.0003, 0.0003, and 0.0007 µg/mL, respectively. The predicted 
MIC values of the novel ligands revealed that they possess better potencies than the most potent 
molecules in the data set. Molecular docking simulations of designed ligands against the active sites of 
DNA gyrase of the bacterium recorded binding energy values of -8.8, -8.7, and -8.8 kcal/mol, 
respectively. Furthermore, ADMET profiles of the designed ligands revealed their excellent 
pharmacokinetic and toxicological profiles. It is envisaged that the wealth of information derived from 
this work could help in the discovery and development of novel antibiotics against S. aureus. 
Keywords: Halogenated hydrazide derivatives, Staphylococcus aureus, DFT, ADMET, QSAR 
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Introduction 

Pathogenic bacteria constitute a major cause of morbidity and mortality in the human 
population. These microbes have devised different avenues of evading antibiotics leading to 
multi-drug resistance,  an ugly trend that could overpower the pharmaceutical industry owing 
to its inability to keep up with the ever-increasing demand for effective novel antibacterial 
agents (WHO, et al., 2018). Multidrug resistance in pathogenic bacterial species has become 
so critical that it has been forecasted that by the year 2050, the annual death rate attributable to 
this ugly scenario could be as high as 10 million (De Kraker et al., 2016). Of particular 
concern are the rising cases of resistance to existing antibiotics by a Gram-positive bacteria 
known as Staphylococcus aureus (S. aureus), a common commensal of the skin that colonizes 
close to one-third of the human population (Williams et al., 1963). Infections by this bacterial 
species occur when the skin or mucosal barrier is breached, allowing the organism to penetrate 
the bloodstream and adjoining tissues. S. aureus causes food poisoning, pneumonia, 
endocarditis, osteomyelitis, sepsis, and toxic shock syndrome (Velascov et al., 2019).  
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pronounced among the immune-compromised 
groups such as HIV-positive persons (Hidron et 
al., 2020). 
Treatment of S. aureus infections is usually via 
the use of antibiotics. Regrettably, resistance to 
these drugs is increasing alarmingly. A major 
way of mitigating this public health emergency 
is the search for novel drug candidates in the 
drug development pipeline. The conventional 
drug discovery and development approach is a 
herculean task because of the enormous time and 
resources expended in the process (Ameji et al., 
2017). However, the application of in silico 
techniques as complementary strategies helps to 
circumvent these bottlenecks. One of these 
techniques is the application of Quantitative 
Structure-Activity Relationship (QSAR) 
modeling. QSAR modeling attempts to analyze 
statistically, the relationships between the 
descriptors of molecular structures of congeneric 
compounds and their observed biological 
activities (Khatkar et al., 2014; Sahu et al., 
2013). Information derived from validated 
QSAR could be used to optimize the structure of 
a biologically active ligand for enhanced 
potency and pharmacokinetic properties (Ameji 
et al., 2023). An ideal 2D QSAR model takes 
the form of a regression equation 1. 
Y = βx1 + γx2 + ωx3 + c                  ………….. 
(1), 
 where Y is the biological property of concern; 
x1, x2, and x3  are the molecular descriptors; β, γ, 
and ω are the numerical coefficients; and c is the 
constant of the regression model. QSAR model 
plays a significant role in ligand-based drug 
design because it helps to optimize the potency 
and drug-like properties of lead compounds 
(Ameji et al., 2023; Spous et al., 2006). Also, 
central to modern drug design is the use of 
molecular docking studies which mimics the 
binding interaction of small molecules known as 
ligands with the active sites of a macromolecular 
target. The magnitude of interaction between a 
ligand and a target macromolecule is usually 

expressed as Gibb’s free energy change (ΔG). 
The lower the magnitude of ΔG of binding, the 
higher the strength of binding interaction and 
vice versa (Behl et al., 2021, Hussain et al., 
2021).  In addition, the safety and ability of a 
biologically active ligand to exert its requisite 
pharmacological roles in the biological system is 
governed by its absorption, distribution, 
metabolism, excretion, and toxicity (ADMET). 
In silico ADMET profiling is an essential 
component of modern drug research owing to its 
ability to minimize attrition rates of drug-like 
candidates during the preclinical and clinical 
stages of drug development (Ameji et al., 2022; 
Daouud et al., 2021). 
Hydrazides are chemical compounds derived 
from the acylation of hydrazine. They are 
characterized by the presence of nitrogen-to-
nitrogen covalent bonds attached to four 
substituents, with at least one of them being an 
acyl group. Their significant pharmacological 
properties have made them components of drugs 
such as 2-azetidiones (an inhibitor of β-
lactamase), Thiazolidinediones (an inhibitor of 
peptidoglycan synthesis), nifuroxazide (an 
antibiotic), nifurtimox (an antiameboic), 
isocarbazide (an antidepressant), iproniazide 
(anti-tuberculosis), etc (Kumari et al., 2016). 
Owing to the enormous therapeutic properties of 
hydrazide, many in silico studies have been 
carried out on some of its derivatives with the 
sole aim of obtaining theoretical insights into its 
biological activities. One such in silico 
investigation is the research work of Mebarka et 
al., (2021) wherein the authors carried out a 
combined 3D-QSAR, molecular docking 
simulation, and ADMET studies on anti-S. 
aureus thienopyrimidine derivatives. Their 
validated CoMFA and CoMSIA models were 
used to design some series of novel drug-like 
compounds. 
Khatkar et al. (2014) performed QSAR 
modeling on a series of synthesized p-coumaric 
acid derivatives. The authors found that the 
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antimicrobial activities of the compounds were 
influenced by the molecules’ electronic energy, 
topological parameters, first-order molecular 
connectivity index, and Wiener index. Also, 
Cortes et al. (2020) investigated the bioactivity 
of Twenty-four cannabinoids against 
Methicillin-Resistant S. aureus using QSAR 
modeling and molecular docking technique. The 
authors used the validated model to design three 
new ligands with significant activities against 
the pathogenic microbes. They also found out 
that the investigated compounds bind 
appreciably with penicillin-binding protein and 
DNA gyrase of the bacterium. Furthermore, 
Narang et al. (2012) performed multi-target 
QSAR studies on the antimicrobial properties of 
nicotinic acid benzylidene hydrazide derivatives. 
Their validated QSAR model (R2 = 0.73) 
revealed that the second-order molecular 
connectivity index descriptor (2χ) played the 
dominant role in the observed antimicrobial 
properties of the investigated compounds. This 
study is aimed at the use of QSAR modeling, 
molecular docking, and ADMET profiling to 
design potent and non-toxic drug candidates 
against S. aureus from halogenated hydrazide 
derivatives.   
Methods 
Collection of Data, Geometry Optimization 
and Descriptor Calculation 
A series of thirty-seven (37) halogenated 
hydrazide derivatives whose invitro inhibitory 
activities against S. aureus have been established 
and expressed as minimum inhibitory 
concentration (MIC) was obtained from 
literature (Bhole et al., 2020; Ozdemir et al., 
2009). The MIC of the compounds was 
transformed into jMIC (jMIC = log MIC) to get 
a more linear response and reduce data 
dispersion in the course of model building 
(Ameji et al., 2023). Geometry optimization is 
the process of obtaining the minimum energy 
conformation of a molecule. ChemDraw Ultra 
12.0 was used to draw the 2D structures of the 

compounds. These structures were converted 
into 3D geometry by exporting them 
sequentially to the Spartan 14 version 1.1.4 
software from Wavefunction Inc. The geometry 
of each of the compounds was optimized using 
the density functional theory (DFT/B3LYP) 
approach and the 6-31G* basis set. The 
descriptors of the optimized structures were 
calculated with the aid of the PaDEL descriptor 
tool kit (Ameji et al., 2023; Ameji et al., 2022; 
Yap, 2011). Table 1 presents the chemical 
structures and jMIC of the bioactive compounds.  
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Table 1: Structures and Experimental jMIC values of the Investigated Compounds  

S/n Structure jMIC 

(µg/mL) 

S/n Structure jMIC 
(µg/mL) 

 

*1 

 

 

 

1.75 

 

 

20 

 

 

 

 

1.62 
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1.75 
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0.48 
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1.58 
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1.40 

   

* Statistical Outlier 

Building and Validation of QSAR Model 
QSAR model was built by splitting the data set 
of the investigated hydrazide derivatives into a 
70% training set and 30% test set using the 
Data- set-Division GUI V2.1 tool of the DTC 
laboratory. The training set was used for model 
building while the test set was used for external 
validation of the model. The V-WSP data 
pretreatment tool 1.2v was used to remove 
redundant descriptors from the calculated pool 
of descriptors. The Genetic Algorithm v4.1 tool 
was used to build the optimum QSAR model by 
setting equation length to 5, mutation probability 

was set to 0.3, variance cut off was set to 0.001 
and inter-correlation cut off was set to 0.9. The 
built QSAR model was validated internally 
using least squares fit (R2), cross-validated R-
squared (Q2LOO), and adjusted R-squared 
(R2Adj.). The external prediction ability of the 
optimum model was adjudged using the 
predicted R2 for the external test set (R2

Pred). The 
validation parameters obtained for the model 
were compared with standard validation metrics 
in QSAR modeling (Ameji et al., 2023). 
Applicability domain definition 
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A single QSAR cannot predict the bioactivity of 
all the molecules in the universe. Thus, it has 
become necessary to define the chemical space 
of molecules within its jurisdiction known as its 
applicability domain (AD). The AD of the 
optimum QSAR model was defined using the 
standardization approach of the AD executable 
jar file in the DTC laboratory. 
Variance Inflation Factor Statistics 
Statistically, Multicollinearity in multiple linear 
regression occurs when there exists a high inter-
correlation among the independent variables. 
The Variance Inflation Factor (VIF) statistic was 
used to check possible multicollinearity among 
the five descriptors in the model. The Model’s 
VIF was calculated using Equation 2. 

   ………… (2), 
Where R2 is the correlation coefficient of the 
multiple regression between the descriptors in 
the model. A VIF of 1 connotes the complete 
absence of multicollinearity among the Model’s 
descriptors. Also, a VIF value larger than 10 
indicates high instability of the model (30, 31). 
Design of New Ligands 
To theoretically design more potent analogs of 
the investigated compounds, the most potent 
bioactive molecule was selected as a template 
molecule and subjected to pharmacophoric 
modifications via the addition of propyl and 
hydroxyl functional groups around the rings of 
the template ligand. The geometries of the 
different derivatives generated were optimized 
and their descriptors were computed using the 
aforementioned procedures in section 2.1. 
Subsequently, the MIC of the designed ligands 
was predicted using the validated QSAR model. 
Also, the newly designed ligands were subjected 
to molecular docking simulation against DNA 
gyrase, a crucial enzyme of S. aureus that plays 
significant roles during its replication processes 
(Adeniji et al., 2022, Coba-Male et al., 2022, 
Jakopin et al., 2017).  

Molecular Docking Procedures 
The optimized structures of the halogenated 
hydrazide derivatives (ligands) were prepared on 
the AutoDock Vina interface and saved in pdbqt 
file formats. The PDB file of DNA gyrase was 
retrieved from the protein data bank (www. rcsb. 
org/pdb) with a PDB code of 5ztj and exported 
to the Discovery Studio 2016 interface where 
attached ligands, water molecules, and 
heteroatoms were removed. The target protein 
was subsequently exported unto the AutoDock 
Vina interface where it was further refined via 
the addition of polar hydrogens and Kollman 
charges. Also, missing atoms in the protein were 
checked and repaired. PyRx GUI of AutoDock 
Vina software was used to perform docking 
calculations. Visualization of the protein–ligand 
interactions was done with the aid of Discovery 
Studio 2016 (Ameji et al., 2023, Adeniji et al., 
2022). 
Druglikeness and ADMET Profiling 
In silico druglikeness evaluation was performed 
to ascertain the suitability of the therapeutic 
ligands to be administered as a drug via the oral 
route. The physicochemical properties of the 
ligands which define their drug-likeness were 
computed using the SwissADME online server 
(www.swissadme.ch/ accessed on 12 May 
2023). Lipinski’s rule of five and Veber’s rule 
were subsequently used to predict the oral 
bioavailability of the compounds. Likewise, 
pharmacokinetic and toxicity prediction was 
performed on the ligands using the SwissADME 
(www.swissadme.ch/ accessed on 12 May 2023) 
and DataWarrior V5.5.0 Chemoinformatics 
program(Ameji et al., 2023,  Ameji et al., 2022).  
Results 
Model and Statistical Validation 
Equation 2 presents the internally and externally 
validated QSAR model connecting the 
descriptors of the investigated halogenated 
hydrazide derivatives and their observed 
inhibitory activities. The statistical validation 
parameters of the model as well as the 
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definitions of the model’s descriptors are 
presented in Tables 2 and 3, respectively. Table 
4 gives the Variance Inflation Factor (VIF) 
statistics of the validated model while the Scatter 
plot of the model is presented in Figure 1. 
Furthermore, the plot of experimental jMIC 

against predicted jMIC for training and test set 
molecules are presented in Figures 2 and 3, 
respectively. Figures 4 and 5 present the residual 
plot of the model and the significance of the 
descriptors in the model, respectively.  

                                           ………………………  (3) 

Table 2: Validation metrics of the QSAR Model 

S/n Parameter Threshold Model Value Statement 

1. Square of Coefficient of determination (R2) ≥ 0.6 0.76 Excellent 

2 Adjusted R-squared (R2
Adj.) ≥ 0.6 0.70 Stable 

3 Cross-validated R-squared (Q2
LOO) ≥ 0.5 0.63 Reliable 

4 Predictive R-squared (R2
pred) ≥ 0.5 0.59 Robust 

5 R2 - Q2
LOO ≤0.3 0.13 Stable 

 
Table 3: Description of the Descriptors in the QSAR Model 

S/n Descriptor Definition Class 
1 L3m 3rd component size directional WHIM index / weighted 

by relative mass 
3D 

2 RDF135s Radial distribution function - 135 / weighted by relative 
I-state 

3D 

3 RDF60m Radial distribution function - 060 / weighted by relative 
mass 

3D 

4 minHBint7 Minimum E-State descriptors of strength for potential 
Hydrogen Bonds of path length 7 

2D 

5 ATSC5i Centered Broto-Moreau autocorrelation - lag 5 / 
weighted by first ionization potential 

2D 

Table 4: Variance Inflation Factor Statistics 

S/n Descriptor R2 VIF 
1 L3m 0.55 2.22 
2 RDF135s 0.45 1.82 
3 RDF60m 0.46 1.85 
4 minHBint7 0.32 1.47 
5 ATSC5i 0.28 1.39 
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Figure 1: Scatter plot of the Optimum QSAR Model 

 

Figure 2: Plot of experimental jMIC against predicted jMIC (training set) 
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Figure 3: Plot of experimental jMIC against predicted jMIC (test set) 

  

 

Figure 4: Residual Plot of the validated Model 
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Figure 5: Descriptors' Contribution to the QSAR Model 

Newly Designed ligands and their predicted 
MIC 
Figure 6 presents the chemical structures of the 
newly designed halogenated hydrazide 
derivatives and a standard inhibitor of DNA 
gyrase (Ciprofloxacin) of S. aureus. The 

descriptors of the ligands were calculated using 
the procedure described in section 2.1 and their 
MIC was predicted using the generated QSAR 
model in Equation 3. Table 5 gives the predicted 
MIC of the novel ligands

. 

 
Table 5: Predicted MIC of the designed ligand 

Ligand L3m RDF135s RDF60m minHBint7 ATSC5i pMIC MIC (µg/mL) 

C1 0.7365 5.7763 16.4518 0 3.4792 -3.4846 0.0003 
C2 0.6704 7.0093 14.4131 0 2.8342 -3.4641 0.0003 
C3 0.6729 6.3789 15.6385 -1.0147 3.4792 -3.1809 0.0007 

 
Molecular Docking Simulation Studies 
In addition to revealing the binding affinity of 
ligands against the active sites of target 
macromolecules, molecular docking also reveals 
the mechanism of interactions between the 

ligand and the receptor. Table 6 presents the 
binding affinity values of the designed ligands 
and ciprofloxacin against DNA gyrase while 
their mechanism of interactions with the 
receptor is presented in Figure 7. 



 

28 

 

  

          Ligand C1                                                                                 Ligand C2 

 

            Ligand C3                                                                          Ciprofloxacin 

Figure 6: Chemical structures of the novel ligands and Ciprofloxacin 

 Table 6: The binding affinity values of the ligands against the receptor and major interacting amino acid 
residues of the macromolecule. 

Ligand ΔG 
(kcal/mol) 

Major interacting amino acid residues 

 

C1 

 

-8.8 

ARG 580 (three attractive charges), PRO 636 (an alkyl), LEU 582 (an alkyl), 
VAL 787 (a pi-alkyl), ILE 683 (a pi-alkyl), ARG 580 (one conventional 
hydrogen bond), LEU 735 (one conventional hydrogen bond), GLN 837 (one 
conventional hydrogen bond). 

C2 -8.7 ALA 633 (a pi-alkyl), ILE 683 (a pi-alkyl), VAL 733 (an alkyl), ILE 683 (an 
alkyl), ARG 580 (two unfavorable positive-positive interactions), ARG 580 
(two attractive charges), ARG 580 (a conventional hydrogen bond), ILE 683 (a 
conventional hydrogen bond)  

C3 -8.8 ALA 633 (a pi-alkyl), VAL 733 (an alkyl), ILE 683 (an alkyl, a pi-alkyl, and a 
conventional hydrogen bond), ARG 580 (two attractive charges, an 
unfavorable positive-positive, a conventional hydrogen bond), ARG 838 (a 
conventional hydrogen bond), VAL 685 (a conventional hydrogen bond), THR 
632 (a conventional hydrogen bond). 

Cipro -7.6 ARG 630 (three alkyl and pi-alkyl), GLN 546 (an amide-pi-stacked), GLU 626 
(one carbon-hydrogen), HIS 545 (one carbon-hydrogen), ILE 631 (one 
conventional hydrogen bond), SER 544 (one conventional hydrogen bond) 
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C1/DNA gyrase complex 

  

C2/DNA gyrase complex 
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Cipro/DNA gyrase complex 

Figure 7: Interaction diagram of the ligands with the target 
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Oral Bioavailability, Pharmacokinetic, and Toxicity Profile of the Ligands 
 Tables 7 and 8 present the drug-likeness and ADMET profiles of the ligands, respectively. 

Table 7: Drug-likeness Profiles of the Ligands 
Ligand 

Rule 

C1 

 

C2 C3 Cipro 

Lipinski’s Yes Yes Yes yes 
HBA 5 4 5 5 
HBD 4 3 4 2 
MW (gmol-1) 459.5 443.5 459.5 331.34 
cLogP(o/w) 3.98 4.4 4.0 1.10 
Veber’s Yes Yes Yes Yes 
NRB 6 6 6 3 
TPSA (Å2) 135.2 115.1 135.3 74.54 
     

HBA; hydrogen bond acceptor, HBD; hydrogen bond donor, Mw; molecular weight, cLogP; consensus octanol-
water partition coefficient, NRB; the number of the rotatable bonds, TPSA;  topological polar surface area 

Table 8: ADMET profiles of Ligands 

 

Ligand 

CYP450  

Substrate 

GIA P-gp+ BBB MUT TUM IR RE LogKp 

(cm/s) 
C1 Yes low No No None None None None -5.6 
C2 Yes High No No None None None None -5.3 
C3 Yes low No No None None None None -5.6 
Cipro Yes High Yes No None None None None -9.1 

ESOL; estimated solubility, GIA; gastrointestinal absorption, BBB; blood-brain barrier penetration, P-gp+; P-
glycoprotein substrate, MU; mutagenicity, TUM; tumorigenic, IR; irritating effect, RE; reproductive effect  

Discussion 
Statistical Significance of the Validated 
QSAR Model 
It is a common paradigm in chemistry that the 
biological activities of congeneric bioactive 
compounds are a function of their molecular 
structure. The QSAR model developed to 
describe the link between the antimicrobial 
properties of the investigated compounds and 
their molecular descriptors is given in Equation 
2. The comparison of the statistical parameters 
of the model with the recommended threshold in 
Table 2 revealed that the model is stable, robust, 
and possesses excellent predictive power 
(Adeniji et al., 2022). In addition, the plot of 
experimental jMIC against the predicted jMIC 
for training set molecules is presented in Figure 

2. The high linearity of the plot further confirms 
the internal stability of the model. Furthermore, 
the model was used to predict the jMIC values 
of an external set of molecules as an additional 
validation protocol. Figure 3 gives a plot of 
experimental jMIC against the predicted jMIC 
for test set molecules. The predictive R2 (R2

pred) 
value of 0.59 which is in agreement with the 
recommended threshold for this parameter 
(Table 2) implies that the model can predict well 
the anti-Staphylococcus aureus activities of new 
hydrazide derivatives within its applicability 
domain. The occurrence of statistical biases in 
the process of model building has negative 
implications for the quality of QSAR models. To 
check for possible biases in the optimum QSAR 
model, the standardized residuals were plotted 
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against the predicted jMIC values (Figure 4). 
The propagation of residuals on both sides of the 
zero lines confirms the absence of systematic 
error in the model development (Ameji et al., 
2023).In multiple linear regression, 
orthogonality connotes that the dependent 
variables are genuinely independent. This is an 
essential requirement of a robust and statistically 
significant QSAR model. The VIF statistics on 
the descriptors of the optimum QSAR model 
(Table 4) reveal that all the descriptors possess 
VIF values of less than 10. Thus, they are all 
reasonably orthogonal. 
Outliers are data points that display significant 
deviation from other observations. The presence 
of an outlier in the data set of molecules used for 
QSAR modeling reduces the statistical quality of 
the model. An outlier analysis performed on the 
built QSAR model revealed the presence of two 
outliers (Figure 1). As a way of ensuring a 
quality model, these data points were expunged 
from the data set. 
Descriptors’ Significance 
The biological properties of molecules are 
strongly linked to the descriptors of their 
molecular structures. The QSAR model 
developed to harness the dominant descriptors of 
the observed anti-Staphylococcus aureus of the 
halogenated hydrazide derivatives revealed the 
dominant influence of L3m, RDF135s, 
RDF60m, minHBint7, and ATSC5i descriptors. 
The analysis of the descriptors’ contribution 
presented in Figure 5 revealed that RDF60m and 
L3m descriptors played dominant roles in the 
observed inhibitory activities of the investigated 
hydrazide derivatives. The negative coefficients 
of both descriptors as revealed by the model 
show that the MIC of the compounds varies 
inversely with the values of these descriptors 
and vice versa. Thus, the lower the values of 
these descriptors in a molecule, the higher its 
MIC against S. aureus and vice versa. Since 
potency varies inversely with MIC, increased 
values of RDF60m and L3m descriptors in 

halogenated hydrazides could improve their 
inhibitory role against the growth of 
Staphylococcus aureus.  
Predicted MIC of the Designed Ligands 
Ligand 21 possesses the best potency in vitro. It 
was selected as a template for designing more 
potent analogs; C1, C2, and C3 (Figure 6). The 
developed QSAR model predicts the MIC values 
of C1, C2, and C3 as 0.0003 µg/mL, 0.0003 
µg/mL, and 0.0007 µg/mL, respectively (Table 
5). The designed ligands were found to possess 
more potency when compared with the template 
molecule with a MIC value of 3.0 µg/mL.  
Molecular Docking Investigation 
Table 6 presents the results of molecular 
docking simulations and mechanisms of 
interaction of C1, C2, C3, and Ciprofloxacin 
with the target DNA gyrase. C1, C2, C3, and 
Ciprofloxacin bind to the active sites of the 
receptor with Gibb’s free of binding value of -
8.8, -8.7, -8.8, and -7.6 kcal/mol, respectively. 
The designed ligands were found to bind more 
strongly to the macromolecule when compared 
to the standard inhibitor of DNA gyrase 
(Ciprofloxacin). Analysis of the mode of 
interaction of the ligands with the active sites of 
DNA gyrase shown in Figure 7 revealed that C1 
binds to the receptor via; the formation of three 
attractive charges with ARG 580; an alkyl 
interaction with PRO 636; an alkyl interaction 
with LEU 582; two pi-alkyl bonds with VAL 
787 and ILE 683; and three conventional 
hydrogen bonds with LEU 735, ARG 580, and 
GLN 837 amino acid residues of DNA gyrase. 
Furthermore, ligand C2 forms: two pi-alkyl 
bonds with ALA 633 and ILE 683; two alkyl 
interactions with VAL 733 and ILE 683; two 
unfavorable positive-positive interactions with 
ARG 580 and two conventional hydrogen bonds 
with ARG 580 and ILE 683. Also, ligand C3 
binds to the active sites of the target 
macromolecule via the formation of two pi-alkyl 
bonds with ALA 633 and ILE 683; two alkyl 
interactions with VAL 733 and ILE 683; two 



 

33 

 

attractive charges and unfavorable positive-
positive interactions with ARG 580; and five 
conventional hydrogen bond with ARG 580, 
ARG 838, ILE 683, VAL 685, and THR 632 
amino acid residues of the target protein. The 
reference ligand on the other hand binds to the 
binding pocket of DNA gyrase through the 
formation of three alkyl and pi-alkyl with ARG 
630; an amide-pi-stacked bond with GLN 546; 
one carbon-hydrogen bond with GLU 626; one 
carbon-hydrogen interaction with HIS 545; and 
two conventional hydrogen bonds with ILE 631 
and SER 544 amino acid residues. The reference 
ligand binds to the target via a mechanism that is 
different from the designed ligands.   
 Oral bioavailability Assessment 
Most drugs designed for systemic effects are 
administered conveniently via the oral route 
(Azma et al., 2022). Hence, the evaluation of the 
oral bioavailability of therapeutic compounds is 
a cardinal aspect of modern drug discovery. 
Lipinski’s rule of five and the Veber rule were 
used for predicting this important parameter in 
the investigated bioactive ligands. According to 
Lipinski’s rule, an orally bioavailable drug must 
not violate more than one of the following rules; 
Mw ≤ 500, nHBD ≤ 5, Log P ≤ 5, and nHBA ≤ 
10. Veber’s rule on the other hand states that an 
orally bioavailable drug must have nNRB that is 
less than 10 and TPSA that is less than 140 Å2 
(Ameji et al., 2023). The oral bioavailability 
profile of the ligands presented in Table 7 
reveals that they obey both rules, an indication 
of their positive drug-likeness. 
Assessment of Pharmacokinetic and Toxicity 
Profiles of the Ligands 
Pharmacokinetics is primarily concerned with 
the mode of interaction of the body with 
administered therapeutic compounds for the 
entire duration of exposure with particular 
reference to their absorption, distribution, 
metabolism, and excretion of the compounds. 
The ability of a therapeutic compound to go 
through intestinal absorption before distribution 

to the proposed target site where it can elicit its 
pharmacological effects is an important 
component of pharmacokinetics investigation 
(Cardenas et al., 2017). The ADME profile of 
the ligands (Table 8) reveals that C2 has a 
similar gastrointestinal absorption potential as 
Ciprofloxacin. Both possess high 
gastrointestinal absorption. C1 and C3 both have 
low gastrointestinal absorption. 
An important pharmacokinetic investigation is 
the oxidative biotransformation of therapeutic 
ligands in the biological system. This 
fundamental role is catalyzed by the 
cytochromes P450 group of enzymes (CYP450). 
A Ligand that is non-substrate of CYP450 could 
pose adverse health effects to the body due to its 
slow or poor metabolism. The ADME data 
(Table 8) of the ligands reveals that the designed 
ligands are all substrates of CYP450, just like 
the standard antibiotic, and as such could be 
easily metabolized by CYP450 enzymes. 
Blood-brain barrier (BBB) is a monolayer of 
endothelial cells between the blood and the 
central nervous system (CNS) that controls the 
entry of chemical substances from the blood to 
the brain (Abbot et al., 2010), creating a stable 
microenvironment for optimum neuronal 
function to avert acute CNS damage. The 
predicted BBB penetration potential of the 
designed ligands (Table 8) shows that they are 
non-permeant of the endothelial cell and as such 
may pose no threat to the CNS.  
Permeability glycoprotein (P-gp) are membrane-
embedded proteins in the gastrointestinal tract, 
BBB, liver, kidney, and placenta that eliminate 
harmful chemicals from the biological system 
through its efflux action (Chen et al., 2018) 
Unlike the standard antibiotic, all the designed 
ligands are found to be non-substrate of P-gp 
(Table 8). It could be inferred that their 
pharmacokinetics profiles may be unaffected by 
the efflux action of P-gp. Another important 
pharmacokinetic parameter worthy of 
consideration especially for therapeutic 
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compounds that require transdermal 
administration is the skin permeability (LogKp). 
The LogKp data of the investigated ligands 
presented in Table 8 revealed that all the 
compounds, just like the standard reference 
antibiotic, have poor skin penetration potentials 
due to the negative values of their LogKp (Khan 
et al., 2017). Additionally, the toxicity profiles 
(Table 8) of the compounds revealed that none 
of them is mutagenic, tumorigenic, irritating, or 
pose any adverse effect on the reproductive 
system.  
Conclusion 
Rising cases of multidrug resistance in 
Staphylococcus aureus are a major threat to 
public health. In addition to the misuse of 
antibiotics in human and veterinary settings, 
dwindling research in antibiotic drug discovery 
and development contributed enormously to this 
public health emergency. A way out of this 
quagmire is a deliberate search for novel drug 
candidates in the drug discovery and 
development pipeline. In this, a set of bioactive 
halogenated hydrazide derivatives were 
subjected to QSAR modeling to find the 
mathematical link between their structures and 
their observed antibiotic properties against 
Staphylococcus aureus. The validated model 
was used to design more potent novel analogs of 
the compounds. The designed ligands were 
further subjected to molecular docking 
simulation against the active sites of DNA 
gyrase target of the bacteria species to get 
insights into the mechanism of action of the 
ligands at the atomic and molecular level. The 
ligands were found to bind strongly to the target 
via hydrophobic, electrostatic, and conventional 
hydrogen bond formation. Also, ADMET 
profiling of the bioactive ligands revealed their 
sound oral bioavailability, and excellent 
pharmacokinetic and toxicity profiles. However, 
this is an insilico investigation, and as such 
invitro and in vivo investigations are required to 
validate the findings of this research. 
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