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Abstract 
Aquatic ecosystems are increasingly threatened by agricultural runoff containing pesticides 
such as Topstoxin, a commonly used organophosphate. These contaminants pose a significant 
risk to the reproductive health of aquatic organisms, particularly fish species like Clarias 
gariepinus, which are important for aquaculture and ecological balance. In this study, a six-
month static renewal bioassay was conducted to assess the chronic reproductive effects of 
sublethal Topstoxin exposure on C. gariepinus. A total of 200 juvenile fish were exposed to 
five concentrations of Topstoxin (0.00%, 1.50%, 2.50%, 3.50%, and 4.50%). Hormonal 
induction using Ovaprim was applied to evaluate the effects on gamete quality, sperm 
motility, milt volume, fertilization rate, hatching success, and larval viability. Data were 
analyzed using one-way ANOVA at a 95% confidence level. The results revealed significant 
dose-dependent declines in reproductive performance. Sperm motility was reduced by 65%, 
from 85% in the control group to 30% at the highest concentration (4.5 mg/L). Sperm 
abnormalities rose from 5% to 40%, and sperm volume declined by 58% (from 0.95 mL to 
0.40 mL). Fertilization rates dropped by 71%, from 85% in the control to 25%, and larval 
hatching success and survival were markedly impaired. In conclusion, chronic exposure to 
sublethal concentrations of Topstoxin significantly disrupts reproductive indices in Clarias 
gariepinus. These findings underscore the ecotoxicological risks posed by pesticide 
contamination in freshwater systems and highlight the need for stringent regulation and 
monitoring of pesticide usage near aquatic habitats 
Keywords:  
Introduction 
Aquatic ecosystems, especially freshwater habitats, are increasingly threatened by 
anthropogenic pollutants, notably pesticides like Topstoxin used extensively in agriculture. 
These chemicals enter aquatic environments through runoff and leaching, exposing non-target 
organisms such as fish to sublethal toxic effects. Clarias gariepinus, a key aquaculture 
species, often inhabits such environments and serves as an important bioindicator due to its 
ecological and economic relevance. Investigating how Topstoxin affects its reproductive 
health is vital for understanding environmental toxicity impacts on aquatic biodiversity and 
fisheries sustainability (Adeyemo et al., 2021; Ogunji et al., 2018). The indiscriminate use of 
agrochemicals such as Topstoxin (a rodenticide and general biocide) in agricultural and 
domestic settings poses a growing threat to non-target aquatic organisms. Despite regulatory 
controls, runoff and leaching often introduce these substances into aquatic ecosystems, where 
they persist and interact with biota. Clarias gariepinus, a widely cultured freshwater fish 
species in Nigeria, is especially vulnerable to such contaminants. However, there is limited 
empirical data on how sublethal exposure to Topstoxin affects the reproductive capacity of 
this species. 
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this species. This gap in knowledge 
hinders effective environmental 
monitoring, impact assessment, and 
formulation of science-based regulatory 
guidelines on chemical use near aquatic 
habitats (Adeyemo et al., 2021; Ogunji et 
al., 2018). Understanding the sublethal 
effects of Topstoxin on the reproductive 
physiology of Clarias gariepinus is 
essential due to the ecological and 
economic value of this species in Nigeria’s 
aquaculture and fisheries. Reproductive 
toxicity can have long-term implications 
for fish population dynamics and food 
security. Given the increasing prevalence 
of chemical contaminants in freshwater 
systems, this study provides timely 
insights into the potential endocrine-
disrupting and gametotoxic effects of 
Topstoxin. The results could aid 
environmental regulatory agencies such as 
NESREA in evaluating permissible 
thresholds for agrochemicals, while also 
informing sustainable aquaculture 
practices (Sahoo et al., 2023; NESREA, 
2019; Sani et al., 2022). Hence, this study 
evaluated the effect of sublethal 
concentrations of Topstoxin on the 
reproductive indices and gamete quality of 
Clarias gariepinus, intending to 
understand its potential impacts on fish 
fertility and population sustainability. 
MATERIAL AND METHODS 
Study Location and Experimental Setup 
The research was carried out at the 
Department of Biological Sciences 
Laboratory, Federal University Dutsin-Ma, 
Katsina State, Nigeria, at coordinates 
12.47275°N and 7.48582°E. A total of 200 
juvenile Clarias gariepinus (measuring 
between 9.3 and 10.2 cm) raised in 
captivity were used. These fish were 
acclimated in 250-liter tarpaulin tanks 
filled with tap water under outdoor 

conditions. Throughout the acclimation 
period, they were fed 2 mm Blue Crown 
commercial feed, and any uneaten feed 
was removed daily to preserve water 
quality (OECD, 2020). 
Topstoxin, obtained from a commercial 
vendor in Katsina, was applied to Clarias 
gariepinus at graded concentrations (0.00 
mg/L, 1.50 mg/L, 2.50 mg/L, 3.50 mg/L, 
and 4.50 mg/L), including a control. Five 
treatment groups with five replicates each 
were prepared via serial dilution and 
measured using a precision balance, 
following OECD (2022) and Reish & 
Oshida (2018) toxicity assessment 
protocols. Exposure concentrations of 4.50 
mg/L, 3.50 mg/L, 2.50 mg/L, and 1.50 
mg/L were derived from fractions of a 
previously established 96-hour LC₅₀ 
(Adeogun & Chukwuka, 2021), alongside 
a 0.00 mg/L control. The study followed a 
21-day static renewal bioassay. Juvenile 
Clarias gariepinus, reared in tarpaulin 
tanks from March to August 2024, were 
transferred to eight plastic aquaria (50 × 30 
× 30 cm), each stocked with five fish in 25 
L of toxicant-treated water. Water was 
regularly replaced to maintain consistent 
toxicant concentrations throughout the 
exposure period. 
Biometric Measurements and Brooder 
Selection 
After six months of exposure, Clarias 
gariepinus broodstock was assessed. Two 
males and two females were randomly 
selected and weighed weekly using a 
digital precision balance (Mettler 
Instruments), while their lengths were 
measured using a digital Vernier caliper 
(Topac Instruments) following Fulton 
(2021). For reproductive evaluation, one 
male and one female fish (average weight: 
1.8 kg; length: 48 cm) were randomly 
selected from each exposure group (n=10) 
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and placed in 25L holding bowls in 
duplicate setups to initiate gonadal 
stimulation. 
Hormonal Injection for Gonadal 
Stimulation 
Brooders were injected intramuscularly 
with Ovaprim™ containing fish 
gonadotropin-releasing hormone (GnRH) 
and a dopamine receptor blocker at 
dosages of 0.5 mL/kg for females and 0.25 
mL/kg for males (Sahoo et al., 2023). 
Sperm Quality Assessment 
Following a 12-hour latency period, male 
broodstock from each treatment group 
were euthanized using medullar 
transection, and their testes were carefully 
excised. The testicular lobes were 
dissected to extract fresh milt, which was 
collected in Petri dishes and transferred 
into a 2 mL graduated cylinder for volume 
measurement. A drop of the milt was then 
placed on a glass slide, activated with an 
equal volume of distilled water, and 
examined at 40× magnification using an 
Olympus Micronal microscope. Sperm 
motility was evaluated based on the 
procedure outlined by Lamai (2021). 
Egg Quality and Fertilization 
Twelve hours post-hormone injection, 
eggs were manually stripped from female 
brooders (n=10 per treatment) by gently 
pressing the abdomen. The eggs were 
weighed using an Ohaus digital balance, 
and total fecundity was estimated by 
counting eggs in a 1g sample. Fifty eggs 
from each female were measured for 
diameter using an ocular micrometer. The 
eggs were then split into two batches, with 
one batch fertilized using milt from males 
exposed to the same toxicant level. 
Fertilized eggs were gently mixed and 
transferred to hatching bowls following 
Huismann and Richter (2022). 
Incubation and Hatching Success 

Fertilized eggs (n=10 per treatment group) 
were incubated for 48 hours, after which 
hatching success was evaluated by 
calculating the percentage of hatched eggs 
using the formula: 
Egg Viability Rate = (Number of Hatched 
Eggs / Total Number of Eggs in Batch) × 
100. 
Non-viable embryos, identified as opaque 
or whitish, were counted at the end of 
incubation. Daily records of larval 
mortality were kept, and survival rates 
were assessed 21 days post-fertilization. 
Hatchlings were fed Artemia® beginning 
on day 34, once their yolk sacs had been 
fully absorbed (Aluko & Ali, 2019). 
Estimation of Gonadosomatic Index 
(GSI) 
Following egg collection, ten female 
brooders from each exposure group were 
euthanized using medullar transection, and 
their gonads were removed. The weight of 
the gonads, including stripped eggs, was 
recorded, and the gonadosomatic index 
(GSI) was determined using the formula: 
GSI = (GW / (BW - GW)) × 100, 
Where, GW represents gonad weight and 
BW is the body weight (Van Aerle et al., 
2023). 
Data Analysis 
Data were expressed as mean ± standard 
deviation (SD), and variations among 
exposure groups were analyzed using a 
One-way Analysis of Variance (ANOVA). 
Duncan’s multiple range test was used to 
determine significant differences across 
exposure concentrations. Data were 
analyzed using the MS Excel Analysis 
ToolPak, with significance set at p < 0.05. 
RESULTS 
Body Morphometrics of Experimental 
Fish 
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Tables 1 and 2 detail the biometric 
parameters of Clarias gariepinus 
broodstock exposed to varying 
concentrations of Topstoxin. Female fish 
generally exhibited higher body mass than 
their male counterparts, likely attributable 
to ovarian mass and egg content. The 
highest recorded female weight was 2.1 kg 
at the 2.50 mg/L exposure level, with 
corresponding standard and total lengths of 
36.03 ± 1.8 cm and 46.0 ± 1.09 cm, 
respectively. In contrast, the lightest male 
was recorded at 1.4 kg (1.50 mg/L), with a 
standard length of 35.03 ± 1.02 cm and a 
total length of 45.01 ± 0.2 cm. Across 
treatments, the morphometric variations 
between groups were statistically 
significant (p < 0.05), underscoring a dose-
dependent influence of Topstoxin on 
growth characteristics. 

Sperm Quality and Volume 

Topstoxin exposure negatively affected 
sperm characteristics (Table 3). Sperm 
motility declined from 85% in the control 
group to 30% at the highest exposure (4.50 
mg/L), indicating substantial impairment 
in sperm function. Concurrently, sperm 
abnormalities—such as coiled tails and 
malformed heads- increased markedly, 

from 5% to 40%. Sperm volume was also 
reduced by over half (from 0.95 mL to 
0.40 mL), suggesting compromised 
testicular output. These adverse effects are 
consistent with pesticide-induced 
reproductive toxicity, possibly due to 
endocrine disruption affecting 
spermatogenesis or structural damage to 
testicular cells (e.g., Leydig and Sertoli 
cells). 

Fertilization Success 

As shown in Table 4, fertilization rates 
declined progressively with increasing 
Topstoxin concentrations. The highest 
fertilization rate (85%) was observed in the 
control group, while the lowest (25%) 
occurred at 4.50 mg/L—a 71% decrease. 
This decline is likely linked to impaired 
sperm motility, increased morphological 
abnormalities, and reduced gamete 
viability. Additionally, oocyte quality may 
have been compromised due to ovarian 
toxicity, while the presence of residual 
pesticides may interfere with gamete 
compatibility and sperm-egg fusion 
processes. 

Table 1: Body weight, standard length, and total length of female Clarias gariepinus 
produced and exposure to topstoxin (n = 5) 

Exposure 
(mg/L) 

Wet 
weight(kg) 

Standard 
length (cm) 

Total length 
(cm) 

0.00 2±1a 35.03±1.12a 45.1±0.01a 

    1.50     1.9±0.7a 34.06±1.85b 44.5±1.02b 

2.50 2.1±0.3b 36.03±1.8a 46.0±1.09a 

3.50 1.8±0.0a 32.07±1.25b 42.6±0.01b 

4.50 2±1b 33.01±0.69a 43±2.82c 

P value  0.825 0.002 0.001 

Significant at p<0.05. Values are given as mean ± standard deviation of the mean (SD; n=10). 
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Table 2: Body weight, standard length, and total length of male Clarias gariepinus produce 
(n = 5) 

Exposure 
(mg/L) 

Wet weight 
(kg) 

Standard length 
(cm) 

Total length 
(cm) 

0.00 1.8±0.3a 37.0±0.01a 47.03±0.25b 

1.50 1.4±0.0b 35.03±1.02b 45.01±0.2c 

2.50 1.7±0.9a 36.01±0.1a 46.04±0.31b 

3.50 1.6±0.5b 37.02±0.18a 48.03±0.01a 

4.50 1.8±0.1a 39. 03±1.01a 49.02±1.09a 

P value 0.003 3.57×10-8 1.26×10-8  

Significant at p<0.05. Values are given as mean±standard deviation of the mean (SD; n=10). 

 

Table 3: Showing sperm quality and sperm volume at different topstoxin exposure 

EXPOSURE(mg/L) SPERM Motility 
(%) 

SPERM 
ABNORMALITY 
(%) 

SPERM 
VOLUME(ml) 

0.00 85± 3a 5± 1a 0.95± 0.05a 
1.50 75 ±4b 12± 2b 0.82± 0.06b 
2.50 65± 5c 18± 3c 0.70± 0.07c 
3.50 50 ±6d 25± 3d 0.58 ±0.08d 
4.50 30± 7e 40± 5e 0.40± 0.10e 
P value  7.04×10-14 2.89×10-12 7.85×10-8  

Significant at p<0.05. Values are given as mean ± standard deviation of the mean (SD; n=10). 

 

Table 4: Showing fertilization rate at different topstoxin exposure 

 Exposure  (mg/l) Fertilization (%) 
0.00 85± 3.0a 
1.50 72± 4.0b 
2.50 58± 5.0c 
3.50 42± 6.0d 
4.50 25± 7.0e 

P value  1.09×10-14 
Significant at p<0.05. Values are given as mean ± standard deviation of the mean (SD; n=10). 

 
DISCUSSION 
The quality of gametes in fish is a key 
marker of reproductive health and 
environmental conditions (Hajirezaee et 

al., 2021). Reduced feeding in fish 
exposed to Topstoxin suggests that 
contamination impairs appetite and 
metabolism, ultimately diminishing 
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growth and reproductive output. Topstoxin 
also induces erratic swimming behaviours, 
which can impair survival instincts like 
predator avoidance and social coordination 
(Blaxter & Hempe, 2019; Mesa et al., 
2018; Scott & Sloman, 2023). Diminished 
body condition from toxin exposure limits 
energy availability for reproductive 
functions, reducing egg and sperm quality 
(Weiss et al., 2020). 
Female nutritional status directly affects 
oocyte development and egg viability 
(Kjørsvik et al., 2023; Brooks et al., 2017; 
Ling et al., 2021). Smaller maternal size 
and weight, observed in exposed fish, 
result in smaller eggs and reduced larval 
survival (Murawski et al., 2020; Adeogun 
& Chukwuka, 2023). A reduced 
gonadosomatic index (GSI) indicates 
disrupted gametogenesis, likely due to 
heavy metals such as lead, chromium, and 
iron in Topstoxin (NESREA, 2019; 
Adeogun & Chukwuka, 2022). These 
metals interfere with dopamine-mediated 
hormonal regulation and impair embryo 
development (Limke et al., 2020; Van 
Duyn et al., 2023; Paran et al., 2021). 
Lower sperm motility and milt volume, 
key fertility indicators, were also observed, 
linked to oxidative stress and endocrine 
disruption (Alquezar et al., 2018; Wang et 
al., 2019). Fertilization failures, even with 
unexposed females, confirm sperm-
specific toxicity from heavy metal 
exposure (Hernandez-Ochoa et al., 2020; 
Kumar et al., 2019; Wirth et al., 2021). 
Poor egg traits and hatching rates reflect 
maternal contaminant transfer and ovarian 
toxicity (Alquezar et al., 2018; Brooks et 
al., 2021). Larger eggs, usually richer in 
nutrients and yielding fitter offspring, were 
fewer in exposed groups (Jastrebski & 
Morbey, 2019; Donelson et al., 2018). 
Endocrine-disrupting chemicals in 

Topstoxin may inhibit gonadotropin-
releasing hormone (GnRH) and affect 
dopamine feedback loops essential for 
reproduction (Wen et al., 2020; Weltzien 
et al., 2021; Soso et al., 2023). Ultimately, 
reduced hatching success and larval 
survival confirm toxic interference with 
gamete viability and development (Bobe et 
al., 2019; Wang et al., 2020). 

CONCLUSION  
This study demonstrated that exposure to 
increasing concentrations of the insecticide 
Topstoxin significantly impairs the 
reproductive health of Clarias gariepinus. 
Observable declines in sperm quality, 
gonadosomatic index, fertilization rate, 
and overall gamete viability highlight the 
toxic effects of this pesticide on both male 
and female broodstock. These adverse 
outcomes are likely due to hormonal 
disruptions, metabolic stress, and 
bioaccumulation of heavy metals such as 
lead and chromium present in the 
insecticide. The findings underscore the 
ecological risk posed by unregulated 
pesticide use in aquatic environments and 
its potential to compromise fish 
reproduction, population sustainability, 
and aquaculture productivity. 
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